Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Replication of the Shrimp Virus WSSV Depends on Glutamate-Driven Anaplerosis.

Identifieur interne : 000A30 ( Main/Exploration ); précédent : 000A29; suivant : 000A31

Replication of the Shrimp Virus WSSV Depends on Glutamate-Driven Anaplerosis.

Auteurs : Chun-Yuan Li [Taïwan] ; Yi-Jan Wang [Taïwan] ; Shiao-Wei Huang [Taïwan] ; Cheng-Shun Cheng [Taïwan] ; Han-Ching Wang [Taïwan]

Source :

RBID : pubmed:26751681

Descripteurs français

English descriptors

Abstract

Infection with the white spot syndrome virus (WSSV) induces a metabolic shift in shrimp that resembles the "Warburg effect" in mammalian cells. This effect is triggered via activation of the PI3K-Akt-mTOR pathway, and it is usually accompanied by the activation of other metabolic pathways that provide energy and direct the flow of carbon and nitrogen. Here we show that unlike the glutamine metabolism (glutaminolysis) seen in most cancer cells to double deaminate glutamine to produce glutamate and the TCA cycle intermediate α-ketoglutarate (α-KG), at the WSSV genome replication stage (12 hpi), although glutaminase (GLS) expression was upregulated, only glutamate was taken up by the hemocytes of WSSV-infected shrimp. At the same time, we observed an increase in the activity of the two enzymes that convert glutamate to α-KG, glutamate dehydrogenase (GDH) and aspartate aminotransferase (ASAT). α-ketoglutarate concentration was also increased. A series of inhibition experiments suggested that the up-regulation of GDH is regulated by mTORC2, and that the PI3K-mTORC1 pathway is not involved. Suppression of GDH and ASAT by dsRNA silencing showed that both of these enzymes are important for WSSV replication. In GDH-silenced shrimp, direct replenishment of α-KG rescued both ATP production and WSSV replication. From these results, we propose a model of glutamate-driven anaplerosis that fuels the TCA cycle via α-KG and ultimately supports WSSV replication.

DOI: 10.1371/journal.pone.0146902
PubMed: 26751681
PubMed Central: PMC4709008


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Replication of the Shrimp Virus WSSV Depends on Glutamate-Driven Anaplerosis.</title>
<author>
<name sortKey="Li, Chun Yuan" sort="Li, Chun Yuan" uniqKey="Li C" first="Chun-Yuan" last="Li">Chun-Yuan Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan</wicri:regionArea>
<wicri:noRegion>Tainan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yi Jan" sort="Wang, Yi Jan" uniqKey="Wang Y" first="Yi-Jan" last="Wang">Yi-Jan Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan</wicri:regionArea>
<wicri:noRegion>Tainan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Shiao Wei" sort="Huang, Shiao Wei" uniqKey="Huang S" first="Shiao-Wei" last="Huang">Shiao-Wei Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Life Science, College of Life Science, National Taiwan University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Cheng Shun" sort="Cheng, Cheng Shun" uniqKey="Cheng C" first="Cheng-Shun" last="Cheng">Cheng-Shun Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan</wicri:regionArea>
<wicri:noRegion>Tainan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Han Ching" sort="Wang, Han Ching" uniqKey="Wang H" first="Han-Ching" last="Wang">Han-Ching Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan</wicri:regionArea>
<wicri:noRegion>Tainan</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26751681</idno>
<idno type="pmid">26751681</idno>
<idno type="doi">10.1371/journal.pone.0146902</idno>
<idno type="pmc">PMC4709008</idno>
<idno type="wicri:Area/Main/Corpus">000B24</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B24</idno>
<idno type="wicri:Area/Main/Curation">000B24</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B24</idno>
<idno type="wicri:Area/Main/Exploration">000B24</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Replication of the Shrimp Virus WSSV Depends on Glutamate-Driven Anaplerosis.</title>
<author>
<name sortKey="Li, Chun Yuan" sort="Li, Chun Yuan" uniqKey="Li C" first="Chun-Yuan" last="Li">Chun-Yuan Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan</wicri:regionArea>
<wicri:noRegion>Tainan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yi Jan" sort="Wang, Yi Jan" uniqKey="Wang Y" first="Yi-Jan" last="Wang">Yi-Jan Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan</wicri:regionArea>
<wicri:noRegion>Tainan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Shiao Wei" sort="Huang, Shiao Wei" uniqKey="Huang S" first="Shiao-Wei" last="Huang">Shiao-Wei Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Life Science, College of Life Science, National Taiwan University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Cheng Shun" sort="Cheng, Cheng Shun" uniqKey="Cheng C" first="Cheng-Shun" last="Cheng">Cheng-Shun Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan</wicri:regionArea>
<wicri:noRegion>Tainan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Han Ching" sort="Wang, Han Ching" uniqKey="Wang H" first="Han-Ching" last="Wang">Han-Ching Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan</wicri:regionArea>
<wicri:noRegion>Tainan</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Aspartate Aminotransferases (metabolism)</term>
<term>Chromones (chemistry)</term>
<term>Citric Acid Cycle (MeSH)</term>
<term>Gene Dosage (MeSH)</term>
<term>Genome, Viral (MeSH)</term>
<term>Glutamate Dehydrogenase (metabolism)</term>
<term>Glutamic Acid (metabolism)</term>
<term>Glutaminase (metabolism)</term>
<term>Glutamine (metabolism)</term>
<term>Hemocytes (cytology)</term>
<term>Hemocytes (metabolism)</term>
<term>Hemocytes (virology)</term>
<term>Hemolymph (MeSH)</term>
<term>Ketoglutaric Acids (metabolism)</term>
<term>Metabolomics (MeSH)</term>
<term>Morpholines (chemistry)</term>
<term>Penaeidae (virology)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Proto-Oncogene Proteins c-akt (metabolism)</term>
<term>RNA Interference (MeSH)</term>
<term>RNA, Double-Stranded (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Sirolimus (chemistry)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Virus Replication (MeSH)</term>
<term>White spot syndrome virus 1 (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>4H-1-Benzopyran-4-ones (composition chimique)</term>
<term>ARN double brin (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Acide glutamique (métabolisme)</term>
<term>Acides cétoglutariques (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Aspartate aminotransferases (métabolisme)</term>
<term>Cycle citrique (MeSH)</term>
<term>Dosage génique (MeSH)</term>
<term>Glutamate dehydrogenase (métabolisme)</term>
<term>Glutaminase (métabolisme)</term>
<term>Glutamine (métabolisme)</term>
<term>Génome viral (MeSH)</term>
<term>Hémocytes (cytologie)</term>
<term>Hémocytes (métabolisme)</term>
<term>Hémocytes (virologie)</term>
<term>Hémolymphe (MeSH)</term>
<term>Interférence par ARN (MeSH)</term>
<term>Morpholines (composition chimique)</term>
<term>Métabolomique (MeSH)</term>
<term>Penaeidae (virologie)</term>
<term>Phosphatidylinositol 3-kinases (métabolisme)</term>
<term>Protéines proto-oncogènes c-akt (métabolisme)</term>
<term>Réplication virale (MeSH)</term>
<term>Sirolimus (composition chimique)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Virus de type 1 du syndrome des taches blanches (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Chromones</term>
<term>Morpholines</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Double-Stranded</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aspartate Aminotransferases</term>
<term>Glutamate Dehydrogenase</term>
<term>Glutamic Acid</term>
<term>Glutaminase</term>
<term>Glutamine</term>
<term>Ketoglutaric Acids</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Proto-Oncogene Proteins c-akt</term>
<term>RNA, Messenger</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>4H-1-Benzopyran-4-ones</term>
<term>Morpholines</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Hémocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Hemocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN double brin</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Hemocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Acide glutamique</term>
<term>Acides cétoglutariques</term>
<term>Aspartate aminotransferases</term>
<term>Glutamate dehydrogenase</term>
<term>Glutaminase</term>
<term>Glutamine</term>
<term>Hémocytes</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Protéines proto-oncogènes c-akt</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Virus de type 1 du syndrome des taches blanches</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>White spot syndrome virus 1</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Hémocytes</term>
<term>Penaeidae</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Hemocytes</term>
<term>Penaeidae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Citric Acid Cycle</term>
<term>Gene Dosage</term>
<term>Genome, Viral</term>
<term>Hemolymph</term>
<term>Metabolomics</term>
<term>RNA Interference</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cycle citrique</term>
<term>Dosage génique</term>
<term>Génome viral</term>
<term>Hémolymphe</term>
<term>Interférence par ARN</term>
<term>Métabolomique</term>
<term>Réplication virale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Infection with the white spot syndrome virus (WSSV) induces a metabolic shift in shrimp that resembles the "Warburg effect" in mammalian cells. This effect is triggered via activation of the PI3K-Akt-mTOR pathway, and it is usually accompanied by the activation of other metabolic pathways that provide energy and direct the flow of carbon and nitrogen. Here we show that unlike the glutamine metabolism (glutaminolysis) seen in most cancer cells to double deaminate glutamine to produce glutamate and the TCA cycle intermediate α-ketoglutarate (α-KG), at the WSSV genome replication stage (12 hpi), although glutaminase (GLS) expression was upregulated, only glutamate was taken up by the hemocytes of WSSV-infected shrimp. At the same time, we observed an increase in the activity of the two enzymes that convert glutamate to α-KG, glutamate dehydrogenase (GDH) and aspartate aminotransferase (ASAT). α-ketoglutarate concentration was also increased. A series of inhibition experiments suggested that the up-regulation of GDH is regulated by mTORC2, and that the PI3K-mTORC1 pathway is not involved. Suppression of GDH and ASAT by dsRNA silencing showed that both of these enzymes are important for WSSV replication. In GDH-silenced shrimp, direct replenishment of α-KG rescued both ATP production and WSSV replication. From these results, we propose a model of glutamate-driven anaplerosis that fuels the TCA cycle via α-KG and ultimately supports WSSV replication. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26751681</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>07</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Replication of the Shrimp Virus WSSV Depends on Glutamate-Driven Anaplerosis.</ArticleTitle>
<Pagination>
<MedlinePgn>e0146902</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0146902</ELocationID>
<Abstract>
<AbstractText>Infection with the white spot syndrome virus (WSSV) induces a metabolic shift in shrimp that resembles the "Warburg effect" in mammalian cells. This effect is triggered via activation of the PI3K-Akt-mTOR pathway, and it is usually accompanied by the activation of other metabolic pathways that provide energy and direct the flow of carbon and nitrogen. Here we show that unlike the glutamine metabolism (glutaminolysis) seen in most cancer cells to double deaminate glutamine to produce glutamate and the TCA cycle intermediate α-ketoglutarate (α-KG), at the WSSV genome replication stage (12 hpi), although glutaminase (GLS) expression was upregulated, only glutamate was taken up by the hemocytes of WSSV-infected shrimp. At the same time, we observed an increase in the activity of the two enzymes that convert glutamate to α-KG, glutamate dehydrogenase (GDH) and aspartate aminotransferase (ASAT). α-ketoglutarate concentration was also increased. A series of inhibition experiments suggested that the up-regulation of GDH is regulated by mTORC2, and that the PI3K-mTORC1 pathway is not involved. Suppression of GDH and ASAT by dsRNA silencing showed that both of these enzymes are important for WSSV replication. In GDH-silenced shrimp, direct replenishment of α-KG rescued both ATP production and WSSV replication. From these results, we propose a model of glutamate-driven anaplerosis that fuels the TCA cycle via α-KG and ultimately supports WSSV replication. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Chun-Yuan</ForeName>
<Initials>CY</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yi-Jan</ForeName>
<Initials>YJ</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Shiao-Wei</ForeName>
<Initials>SW</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Cheng-Shun</ForeName>
<Initials>CS</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Han-Ching</ForeName>
<Initials>HC</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>01</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002867">Chromones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007656">Ketoglutaric Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009025">Morpholines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012330">RNA, Double-Stranded</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0RH81L854J</RegistryNumber>
<NameOfSubstance UI="D005973">Glutamine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>31M2U1DVID</RegistryNumber>
<NameOfSubstance UI="C085911">2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3KX376GY7L</RegistryNumber>
<NameOfSubstance UI="D018698">Glutamic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.4.1.2</RegistryNumber>
<NameOfSubstance UI="D005969">Glutamate Dehydrogenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.6.1.1</RegistryNumber>
<NameOfSubstance UI="D001219">Aspartate Aminotransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D051057">Proto-Oncogene Proteins c-akt</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.2</RegistryNumber>
<NameOfSubstance UI="D005972">Glutaminase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001219" MajorTopicYN="N">Aspartate Aminotransferases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002867" MajorTopicYN="N">Chromones</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002952" MajorTopicYN="Y">Citric Acid Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018628" MajorTopicYN="N">Gene Dosage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="N">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005969" MajorTopicYN="N">Glutamate Dehydrogenase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018698" MajorTopicYN="N">Glutamic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005972" MajorTopicYN="N">Glutaminase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005973" MajorTopicYN="N">Glutamine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006434" MajorTopicYN="N">Hemocytes</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006458" MajorTopicYN="N">Hemolymph</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007656" MajorTopicYN="N">Ketoglutaric Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055432" MajorTopicYN="N">Metabolomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009025" MajorTopicYN="N">Morpholines</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033561" MajorTopicYN="N">Penaeidae</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051057" MajorTopicYN="N">Proto-Oncogene Proteins c-akt</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012330" MajorTopicYN="N">RNA, Double-Stranded</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="Y">Virus Replication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046848" MajorTopicYN="N">White spot syndrome virus 1</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>08</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>12</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26751681</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0146902</ArticleId>
<ArticleId IdType="pii">PONE-D-15-35406</ArticleId>
<ArticleId IdType="pmc">PMC4709008</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2002 Jun;282(6):C1404-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1956 Feb 24;123(3191):309-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13298683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14182-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2006 Dec;2(12):e132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17173481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19345-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18032601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2008 Nov;33(11):557-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18819805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18782-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cancer Biol. 2009 Feb;19(1):25-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19130886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Feb;5(2):e1000374</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19214224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Mar 1;23(5):537-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19270154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Immunol. 2009 May;46(8-9):1688-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19297025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 22;324(5930):1029-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19460998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Clin Nutr. 2009 Sep;90(3):875S-880S</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19571222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2009 Oct 15;69(20):7986-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19826036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Feb;84(4):1867-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19939921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2010 Feb 1;70(3):859-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20086171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fish Shellfish Immunol. 2010 Jul;29(1):94-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20202479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2010 Apr;2(4):185-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20442453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2010 Aug;35(8):427-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20570523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2010 Oct 1;9(19):3884-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20948290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Invertebr Pathol. 2011 Jan;106(1):110-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21215359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2011 Feb;11(2):85-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21258394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Med (Berl). 2011 Mar;89(3):229-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21301794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2011 Jul;19(7):360-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21570293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Dec;85(24):12919-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21976644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Nov 20;481(7381):380-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22101433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Ther. 2012 Jan;11(1):14-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22234809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Aug 10;47(3):349-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22749528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11818-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22752304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Apr 4;496(7443):101-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23535601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 May 9;153(4):840-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23663782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Apr;88(8):4366-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24501408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2014 Jul;25(7):364-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24856037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Jun 12;10(6):e1004196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24945378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2015 Apr;42(4):841-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25689954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Comp Immunol. 2015 Nov;53(1):85-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26112000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10625-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7938003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1291-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9990017</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Taïwan</li>
</country>
</list>
<tree>
<country name="Taïwan">
<noRegion>
<name sortKey="Li, Chun Yuan" sort="Li, Chun Yuan" uniqKey="Li C" first="Chun-Yuan" last="Li">Chun-Yuan Li</name>
</noRegion>
<name sortKey="Cheng, Cheng Shun" sort="Cheng, Cheng Shun" uniqKey="Cheng C" first="Cheng-Shun" last="Cheng">Cheng-Shun Cheng</name>
<name sortKey="Huang, Shiao Wei" sort="Huang, Shiao Wei" uniqKey="Huang S" first="Shiao-Wei" last="Huang">Shiao-Wei Huang</name>
<name sortKey="Wang, Han Ching" sort="Wang, Han Ching" uniqKey="Wang H" first="Han-Ching" last="Wang">Han-Ching Wang</name>
<name sortKey="Wang, Yi Jan" sort="Wang, Yi Jan" uniqKey="Wang Y" first="Yi-Jan" last="Wang">Yi-Jan Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A30 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A30 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26751681
   |texte=   Replication of the Shrimp Virus WSSV Depends on Glutamate-Driven Anaplerosis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26751681" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020